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The Gibbs-Bogoliubov inequality? 

A. ISIHARA 
Statistical Physics Laboratory, Department of Physics, State University of New York, 
Buffalo, N.Y., U.S.A. 
MS. received 12th February 1968, in revised form 14th May 1968 

Abstract. A simple inequality, expressed in terms of two arbitrary distribution 
functions of the same normalization, is shown to be useful. By choosing various 
different forms for the distribution functions one can derive important results, such 
as the upper and lower bounds of the configurational free energy. 

1. Introduction 
I n  statistical mechanics variational methods based on minimizing the free energy 

have been used widely. For many-body systems several other variational techniques, 
such as those based on quantum-mechanical principles of minimizing the energy, have 
been successfully developed (Feynman and Cohen 1956, Bogoliubov 1958, Kohn 1964, 
Mermin 1965). 

As one of such variational principles, Peierls (1938) presented an inequality which gave 
a rigorous lower bound to the exact partition function, namely an upper bound to the free 
energy. The  inequality is of particular importance when one tries to replace the 
Hamiltonian by its diagonal elements. Since then several investigations on the inequality 
have been reported. For instance, Husimi (1940) showed that the Peierls inequality was 
based on the convexity of an exponential function. Griffiths (1964) gave more extensive 
discussions on the convexity of the free-energy function and derived what he called 
Bogoliubov inequality (Tolmachev 1960, Muehlschlegel 1960, Girardeau 1962) for the 
free energy in terms of the maximum and minimum eigenvalues of the interaction 
Hamiltonian. The  Bogoliubov and Peierls inequalities are closely related. In  fact, by 
simply setting all of the off-diagonal elements of the Hamiltonian to zero one obtains the 
Peierls inequality from the Bogoliubov inequality. 

On the other hand, one recalls that the H theorem is one of the basic principles for 
variational theories. Actually, there are several different H theorems, such as that based on 
the Boltzmann or on the Gibbs canonical distribution function. We are concerned with the 
H theorem for a canonical distribution and also with the H theorem based on coarse graining. 
The  former H theorem states that the canonical distribution corresponds to minimum H,  
and the latter implies a decrease in H due to coarse graining. 

The  purpose of this paper is to show that these H theorems are particular cases of a 
more general theorem expressed by a simple mathematical inequality. This inequality 
involves two arbitrary distribution functions of the same normalization. Therefore by 
choosing the distribution functions suitably one obtains various important results, including 
the H theorems and the Bogoliubov inequality. One can also show in a particular case that 
an important part of the entropy of a physical system is negative or zero, if it is defined in 
terms of a distribution function satisfying a certain condition. Moreover, this negative 
property is related to the Gibbs-Bogoliubov inequality to be discussed in this paper. The  
new mathematical inequality holds irrespective of quantum or classical statistics. Thus  
some of the variational principles in statistical mechanics will be discussed from a unified 
point of view. 

2. Mathematical inequality 
For the simplest presentation of our starting point let us introduce x for the phase-space 

variable, which can be momenta or spatial coordinates and can even be discrete. Let us 
define two phase-space distribution functions f ( x )  and g(x), which are both positive and 
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satisfy the same normalization condition (Isihara and Wu 1968) : 

For these distribution functions the following inequality holds 

This result may look strange since g(x) and f(x) are arbitrary. However, its validity 
can be proved following the method which Gibbs used for the H theorem (Gibbs 1902) : 

= Jg(x){iln f f  (;)g-;lng- f 

It is important to notice in (2.2) that both f (x) and g(x) are arbitrary. Thus iff(.) and 
(g)x  are both functions of energy and give the same average energy: 

jf(+)H(x) dx = j g ( W ( 4  dx 

= W ( x ) )  

g(x> = “P{(P(F-H)I 

and if g(x) is the canonical distribution: 

then the inequality (2.2) expresses the Gibbs H theorem for canonical ensemble. In  these 
expressions /3 = l / k T ,  F is the free energy and H is the Hamiltonian. On the other hand, 
if g( x) is a coarse-grained distribution function obtained from a fine-grained distribution 
function f (x) : 

for x in Ai, the ith cell in phase space 

then (2.2) is reduced to the H theorem due to coarse graining. 

simple form it yields many useful and interesting results. 
Further applications of the inequality (2.2) are presented in this paper. In  spite of the 

3. Linked cluster expansion 
In  this section we shall consider thermodynamic functions evaluated by a perturbation 

method. As is well known, a linked cluster expansion expresses a physical quantity such 
as the free energy in terms of the contributions from connected graphs. Based on the 
inequality (2.2) we shall derive interesting results for such an expansion. 

Let us start with the Hamiltonian of the following general structure: 

H = Ho+H,. (3.1) 

F = Fo+F,. (3.2) 

Correspondingly, we shall write the Helmholtz free energy as follows : 

We now use equation (2.2) for the following two distribution functions: 

(3-3) 
f = e x p w o  -Hd 
g = exp(P(F-H)I. 
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Both distribution functions are normalized to 1. From this condition we find 

Equation (3.4) may be expressed in terms of the Thiele semi-invariants: 

-PF1 = 2 C S P S  
S 

where 
c 1 =  <-H1>0 

c2 = t( W12 >o - <Hl >02) 

1 
3! c3 = - (<-H13 >0-3 <-Hi >o <Hi2 )0-2 (Hi )031 

and 

j exp( -PHo)HIS dx 

<HlS>0 = 

The mathematical inequality (2.2) now states 

(3.5) 

(3.7) 

In  terms of the invariants this expression assumes the next form: 

P3 
- - ( <H14 >o - 4 0% >o W13 >o - 3 (H12 >02 

+ 12 (HI >oz (HI2  >o - 6 (H1)04) + ... . 
4! 

(3.9) 
Therefore the first correlation or the second Thiele invariant is larger than the sum of the 
rest in the linked cluster expansion. 

Inequality (3.9) is the result of (2.2) and equation (3.3). Generally, it may be expressed 
in the following form: 

W l  >o 2 Fl. (3.10) 

According to Tolmachev (1960) this inequality is due to Bogoliubov (1958). Muehlschlegel 
and Zittartz (1963) and Girardeau (1962) developed variational theories based on the 
inequality. 

So far our discussions have been based on the choice of the distribution functions 
given by equation (3.3). We could, however, switchf and g in equation (3.3) as follows: 

(3.11) 

Using these distribution functions in inequality (2.2), we arrive at another interesting 

f = exp{P(F- HI) 
g = exp(P(F0 - H0)h 
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(3.12) 

(3.13) 

In  particular, if H o  and H ,  do not have common variables, such as in the case of the 
kinetic and potential energies, we can express H, as follows: 

(3.14) 

Namely, ( H , )  is the configurational internal energy. I n  bringing ( H l >  of equation (3.13) 
into the form of (3.14) integrations over momentum variables may be required. Therefore, 
although we have used the same symbolic phase-space variable x, dx in equation (3.13) 
may be different from that in equation (3.14). Because of the normalization imposed on the 
distribution functions f ( x )  and g(x), such a difference in dx does not cause any difficulty. 

We may now summarize observations. Combining inequalities (3.10) and (3.12), we 
arrive at 

(H1 >o 2 Fl 2 <Hl>. (3 .15)  

Similar inequalities have been obtained by Griffiths (1964) by a different method. From 
now on we shall call the entire relation (3.15) the Gibbs-Bogoliubov inequality. As we 
remarked, the first of the inequalities in (3.15) is apparently due to Bogoliubov. 

We have arrived at our result (3.15) by choosing the distribution functions in suitable 
ways. The  distribution functions have to satisfy the condition (2.1). Therefore the 
question remains whether such distribution functions can actually be introduced in 
treating many-body problems. In  what follows we shall discuss this question for several 
interesting cases. 

4. Ising lattice 
The Hamiltonian of a spin lattice may be written as follows: 

H = -4 2 Jijpipj. 
i P j  

Let us express this Hamiltonian in momentum space and treat the spin lattice under a 
random-phase approximation. The  Hamiltonian may be expressed in the form 

1 
H = - - c-J(q) exp{iq. (ri-rj)}pipj 

2Ni+i 
where N is the total number of lattice sites. T o  include the i = j term it is customary to 
assume (Horwitz and Callen 1961, Brout 1964) 

c J(q) = 0 
4 

corresponding to 
J(r) = Oforr = 0. 

Thus, defining the Fourier transform 

2 e x ~ ( i q  ri)pi = P(Q) 

H = -4 2 J(P)IPL(!?)l2. 

i 

we can express the Hamiltonian in the following way: 

4 

(4.5) 
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<lPL(!?)12)o = 1 (4.7) 

Equation (4.5) states that p(q) is a sum of random variables about zero with the average 

where the suffix corresponds to the non-interacting Ising lattice. Therefore, by the central 
limit theorem which is expected to hold for N -+ CO, we can introduce the distribution 
function [v' e x d  - "(4 exP( -hY2(Q)} 

($7p 
f (x, Y) = 

where 
x(!d = /PL(Z)I2 

Y(Q) = Po. 

<IP(q)lZfl)o = n! 

(4 # 01 

The  distribution function gives the averages : 

(poz2n)0 = (2n-1)(2n-3) ... 1 
(4.10) 

in agreement with equation (4.7) in the special case. The distribution function thus defined 
is normalized as follows : 

(4.11) 

We now try to introduce another distribution function g(x, y) for comparison. This 
distribution function must satisfy the same condition as (4.1 1) : 

(4.12) 

We note that, in terms of the expressions in the previous section, we are treating the case 
where Fo = 0. Thus we choose 

From the normalization condition (4.12) we find 

Using equation (4.14) we arrive at 

-, . The  energy is obtained as follows: 

(4.14) 

(4.15) 

(4.16) 
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The short-range correlations of the spins are taken into consideration in this expression. 
This result may be compared with a simple arithmetic average of equation (4.6) 

(4.17) 

We observe that the internal energy U under the random-phase approximation is lower 
than and that 

<Hl)O 2 F 2 W l >  (4.18) 

in conformity with inequality (3.15). More explicitly, (4.18) is 

(4.19) 

This inequality holds for PJ(q) < 1. The  equality corresponds to the case 
spin lattice is completely at random. 

Equations (4.16) and (4.6) give 

= 0, when the 

1 

(4.20) 

in contrast with equation (4.7). Thus the theory based on the random-phase approxima- 
tion is an improvement on that which neglects the spin correlations. 

5. Imperfect gas 
As in the previous section, there are many physical systems which, under certain 

situations, obey the normal distribution. There are also many cases where the phase 
space extends to infinity. For the discussion of such cases let us choose the distribution 
function 

From the inequality (2.2) we derive 

Here we have used the normalization 

J f(x)dx = 1. 

Therefore, if we use the entropy defined by 

S =  - k J f l n f d x  

we arrive a t  

S < Xk(x2)-&k In - . 

The  right-hand side is a minimum when X satisfies 

C) 
1 A=- 

2 (x”. 
T h e  inequality (5 .5)  for this case is 

S < *k( 1 + In 2n (x2 )). 

( 5 . 3 )  
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Essentially the same result may be obtained if many variables are included in the 
distribution function. We find 

S < 2 .!&(1+1n2x(xi2)). 
i 

We observe that the entropy is a maximum for 

2n(x : )  = 1. 
This is the case when the equipartition law holds for the independent variables xi. 

another distribution function f(x) by 
So far we have used only the normal distribution (5.1) in (2.2). Let us now introduce 

f(x) = g(.> exp(P(Fc - @)I (5.9) 
where 0 is the total potential energy and F, is the free energy. Then inequality (2.2) 
yields 

/ ( F ,  - @)f(x) dx 2 0 (5.10) 
or 

where c stands for configuration. 
F, 2 U, (5.11) 

We now extend our consideration to a system composed of N interacting gas particles. 
First, we introduce the distribution function g ( x )  corresponding to an ideal gas: 

where 

(5.12) 

(5.13) 

Herep, represent the momenta, h Planck's constant, r i  the spatial coordinates and I/ is the 
total volume. Furthermore, we introduce the notation which we have used before: 

g ( 4  = e x p w o  - ~ 0 ) )  (5.14) 

where Fo is the Helmholtz free energy and H o  is the kinetic energy. The  normalization 
condition for g(x) is 

/g(x) dx, ... dx,, = / g ( x )  dx, ... dXN = 1. 

As we remarked in connection with equations (3.13) and (3.14), we have used here the 
same symbolic notation g(x) on both sides. As in equation (3.4), we have the relation 

exp( -/3Fc) = 1 exp( -/I@) dxNtl ... dx,,. (5 .15)  

Except for the factor N ! ,  this agrees with the standard definition of the configurational 
free energy. Equation (5.15) is the result of the normalization to 1 of the distribution 
function : 

f(.> = g ( 4  exp" - @)>I. (5.16) 

In  terms of this (total) distribution function we can define the average of the potential 
energy : 

S f ( x ) ( D d x ,  ... dx,, = exp(j3(F,-@)}@dxN+, ... dx2, s 
= U,. (5.17) 

Again, in these expressions the suffix c stands for configuration. 
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The configurational free energy and the internal energy have been evaluated in terms of 
the irreducible integrals. As is well known, the results are 

1 
Uc = N 2 - 

k 

(5.18) 

where v is the specific volume and the Pi, are irreducible integrals. Thus, applying our 
result (5,11), we find an interesting result: 

The  inequality (5.19) is satisfied if 

(5.19) 

( 5  20)  

This condition holds in the case when the irreducible integrals vary with temperature as 
p' when E is larger than 1. This means that the irreducible integrals may have a non-linear 
/3 dependence. 

Let us examine this observation in the particular case of a van der Waals gas. In  this 
case only PI enters the theory. Thus we find 

P1 
P aP 
- < -. (5.21) 

In  the standard units and notation the first irreducible integral PI for a van der Waals gas 
is 

PI = 2 ( ~ / 3 - b ) .  ( 5  2 2 )  

Therefore the condition (5.21) is reduced to 

b > O  ( 5  23)  

which is certainly correct because b is four times the molecular volume. 
It is known that at high temperatures the second virial coefficient given by 

equation (5.22) is moderately close to experiments. At low temperatures P1 increases more 
rapidly with increasing temperature than is indicated by the expression. The  third virial 
coefficient P2 seems generally to be positive and considerably larger than P12, indicating 
that its temperature dependence is also strong. P 3  is larger and varies more rapidly with 
temperature than PI3 or ,82312 which have the same dimension. Concerning higher 
irreducible coefficients and the irreducible series itself, not much is known. In  this 
situation the relation (5.19) will serve as a general criterion which the irreducible series 
should satisfy. It may be used particularly when the virial series is evaluated by a certain 
approximate method. 

6. Quantum statistics 
Our considerations in the previous sections can easily be extended to quantum- 

mechanical many-body systems. For the discussion let us use the grand ensemble. We 
introduce the grand potential by 

exp( - p Q )  = tr exp{ -P(H-pN)} (6.1) 
and the normalized distribution f by 

f = exp@'(Q-H+pN)). 
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Once again we consider the case 

H = Ho+H, 
a = a,+a,. 

exp( -PQ> = tr[exp{-P(Ho -PN)P(P)I 

As is well known, the grand potential is obtained from 

or from 

exp( -P(Q - RON = ( W P )  >o 

(-1” a 

n n! o 
= 1 + C -- J ( P { H ~ ( x ~ )  * H(xn)) dxl 
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... 
where P is Dyson’s chronological operator. 

may be expanded in a linked cluster series: 
Using the notation of the second quantization, the grand potential of equation (6.5) 

n 

x Jl (P(arl*(xl)asl$(xl)as,.(xl)ar~,(Xl) .**I >o*  

Here 4 is a pair potential, and the Hamiltonian has been taken in the following form: 

Ho = 2 E,ar*ar 

1 
Hl = - 2 ( y s  14 Ir’s’)a,*a,*asrar, . 

r 

2V r s  
r‘s’ 

By this notation we arrive at 

where 

According to the Gibbs theorem, the grand potential reaches its minimum for a grand 
canonical distribution function, If it is evaluated in terms of some other trial distribution 
function, we shall have 

Qt 2- a. (6.10) 

Together with the inequality (6.8), the relation (6.10) may be used for a variational 
determination of a correct distribution function. 

As we remarked before, there is yet another theorem originally due to Peierls (1938), 
which gives a condition on the grand potential. The  Peierls theorem states 

where 
(6.11) 

(6.12) 

where the suffix D stands for diagonal. Compared with the inequality (6.11), our result 
(6.8) is slightly more general. I n  the case when Ql = Q-Qo and = 0 the first of 
the inequalities in (6.8) coincides with what we expect from (6.11). 
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7. Concluding remarks 
Starting with the simple inequality (2.2), we have derived various results. I n  concluding 

this article, we remark that one more simple but interesting result can be derived from the 
inequality. As we shall discuss, this result is not independent of some of our results in the 
preceding sections. 

We recall that the distribution function g(x) is arbitrary. Thus let us choose simply 

g(x) = 1. 
Then inequality (2.2) is reduced to 

/ f l n f d . r >  0 (7.1) 
under the condition 

J f ( ~ )  dX = J dx ( 7 4  

in accordance with equation (2,l). 
Equation (7.1) may be interpreted that the entropy of a system of a distribution function 

f (x) satisfying (7.2) is negative or zero. This conclusion may seem strange at first sight 
since we are accustomed to the positiveness of entropy. However, it is the consequence 
of the condition (7.2). 

One can easily confirm this property by considering simple examples, such as a dipole 
in a uniform field or a spin in a magnetic field. Moreover, one sees also that equation (3.12) 
or (5.11) is in agreement with this observation. Thus, if So is the configurational entropy 
related to the free energy by F, = U,- TS,, then equation (3.12) or (5.1) gives 

s, < 0. (7.3) 
This property is simple to remember and may be used to check theoretical results. 

Furthermore, examining (3.15), one can conclude that the second of the inequalities 
coincides with what (7.3) states: namely, that part of the Gibbs-Bogoliubov inequality 
corresponds to the negativeness of the entropy. 
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